
Mathematical Toolkit Fall 2024

Lecture 1: September 30, 2024
Lecturer: Avrim Blum (notes based on notes from Madhur Tulsiani)

The primary goal of this course is to collect a set of basic mathematical tools which are often
useful in various areas of computer science. We will mostly focus on linear algebra and
probability, both their underlying theory and various applications. Please see the course
webpage for a more detailed list of topics.

The course will be evaluated on the basis of the following:

• Homeworks: 60% (five homeworks worth 12% each)

• Midterm: 15%

• Final: 25%

1 Fields

A field, often denoted by F, is simply a nonempty set with two associated operations +
and ·mapping F×F→ F, which satisfy:

- commutativity: a + b = b + a and a · b = b · a for all a, b ∈ F.

- associativity: a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c for all a, b, c ∈ F.

- identity: There exist elements 0F, 1F ∈ F such that a + 0F = a and a · 1F = a for all
a ∈ F.

- inverse: For every a ∈ F, there exists an element (−a) ∈ F such that a + (−a) = 0F.
For every a ∈ F \ {0F}, there exists a−1 ∈ F such that a · a−1 = 1F.

- distributivity of multiplication over addition: a · (b + c) = a · b + a · c for all a, b, c ∈
F.

Example 1.1 Q, R and C with the usual definitions of addition and multiplication are fields. But
Z with the usual definitions is not (why?).
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Example 1.2 Consider defining addition and multiplication on Q2 as

(a, b) + (c, d) = (a + c, b + d) and (a, b) · (c, d) = (ac + bd, ad + bc) .

These operations do not define a field. While various properties of addition are indeed satisfied,
inverses may not always exist for multiplication as defined above. Check that the multiplicative
identity needs to be (1, 0) but then the element (1,−1) has no multiplicative inverse.

However, for any prime p, the following operations do define a field

(a, b) + (c, d) = (a + c, b + d) and (a, b) · (c, d) = (ac + pbd, ad + bc) .

This is equivalent to taking F =
{

a + b
√

p | a, b ∈ Q
}

with the same notion of addition and
multiplication as for real numbers. Alternatively, one can also define a field by taking (a, b) ·
(c, d) = (ac− bd, ad + bc) (why?)

Example 1.3 For any prime p, the set Fp = {0, 1, . . . , p− 1} (also denoted as GF(p)) is a field
with addition and multiplication defined modulo p.

2 Vector Spaces

A vector space V over a field F is a nonempty set with two associated operations + :
V ×V → V (vector addition) and · : F×V → V (scalar multiplication) which satisfy:

- commutatitivity of addition: v + w = w + v for all v, w ∈ V.

- associativity of addition: u + (v + w) = (u + v) + w ∀u, v, w ∈ V.

- pseudo-associativity of scalar multiplication: a · (b · v) = (a · b) · v ∀a, b ∈ F, v ∈ V.

- identity for vector addition: There exists 0V ∈ V such that for all v ∈ V, v + 0V = v.

- inverse for vector addition:∀v ∈ V, ∃(−v) ∈ V such that v + (−v) = 0V .

- distributivity: a · (v + w) = a · v + a · w and (a + b) · v = a · v + b · v for all a, b ∈ F

and v, w ∈ V.

- identity for scalar multiplication: 1F · v = v for all v ∈ V.

Definition 2.1 (Linear Dependence) A set S ⊆ V is linearly dependent if there exist distinct
v1, . . . , vn ∈ S and a1, . . . , an ∈ F not all zero, such that ∑n

i=1 ai · vi = 0V . A set which is not
linearly dependent is said to be linearly independent.

Example 2.2 R is a vector space over Q.
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Example 2.3 The set
{

1,
√

2,
√

3
}

is linearly independent in the vector space R over the field Q.

Example 2.4 R[X] is a vector space over R. (This is the set of polynomials in X with real-valued
coefficients).

Example 2.5 C([0, 1], R) = { f : [0, 1]→ R | f is continuous} is a vector space over R.

Example 2.6 Fib =
{

f ∈ RN | f (n) = f (n− 1) + f (n− 2) ∀n ≥ 2
}

is a vector space over R.

Proposition 2.7 Let b1, . . . , bn ∈ R be distinct and let g(x) = ∏n
i=1(x− bi). Define

fi(x) =
g(x)

x− bi
= ∏

j 6=i
(x− bj) ,

where we extend the function at point bi by continuity. Prove that f1, . . . , fn are linearly indepen-
dent in the vector space R[x] over the field R.

Proof: First of all, 0V is the zero polynomial. For contradiction, assume the fi are linearly
dependent, so there exists a1, ..., an not all zero such that a1 f1(x) + ... + an fn(x) is the zero
polynomial (i.e., it equals 0 no matter what value is given for x). Let ai be some nonzero
coefficient (we are guaranteed there is at least one). If we feed in x = bi, then all terms of
the polynomial become 0 except for ai fi(bi). This term is non-zero because the b’s are all
distinct and ai 6= 0. Contradiction.

Example 2.8 The set of functions

S = {1} ∪ {sin(kx) | k ∈N, k ≥ 1} ∪ {cos(kx) | k ∈N, k ≥ 1} ,

is linearly independent in the vector space of continuous real-valued functions over R.

3 Linear Independence and Bases

Definition 3.1 Given a set S ⊆ V, we define its span as

Span (S) =

{
n

∑
i=1

ai · vi | a1, . . . , an ∈ F, v1, . . . , vn ∈ S, n ∈N

}
.

Note that we only include finite linear combinations.
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Remark 3.2 Note that the definition above and the previous definitions of linear dependence and
independence, all involve only finite linear combinations of the elements. Infinite sums cannot be
said to be equal to a given element of the vector space without a notion of convergence or distance,
which is not necessarily present in an abstract vector space.

Definition 3.3 (Basis) A set B is said to be a basis for the vector space V if B is linearly indepen-
dent and Span (B) = V.

It is often useful to use the following alternate characterization of a basis.

Proposition 3.4 Let V be a vector space and let B ⊆ V be a maximal linearly independent set i.e.,
B is linearly independent and for all v ∈ V \ B, B ∪ {v} is linearly dependent. Then B is a basis.

In particular, if B satisfies Definition 3.3 then it satisfies Proposition 3.4 since any v ∈ V \ B
can be written as a finite linear combination of vectors in B. In the other direction, if B
satisfies Proposition 3.4 then it satisfies Definition 3.3 because if it didn’t, then B ∪ {v}
would be linearly independent for any v ∈ V \ Span(B).

The following proposition and its proof will be very useful.

Proposition 3.5 (Steinitz exchange principle) Let {v1, . . . , vk} be linearly independent and
{v1, . . . , vk} ⊆ Span ({w1, . . . , wn}). Then ∀i ∈ [k] ∃j ∈ [n] such that wj /∈ {v1, . . . , vk} \ {vi}
and {v1, . . . , vk} \ {vi} ∪ {wj} is linearly independent.

Proof: Assume not. Then, there exists i ∈ [k] such that for all wj, either wj ∈ {v1, . . . , vk} \
{vi} or {v1, . . . , vk} \ {vi} ∪ {wj} is linearly dependent. Note that this means we cannot
have vi ∈ {w1, . . . , wn}. (In that case, wj = vi would fail.)

The above gives that for all j ∈ [n], wj ∈ Span ({v1, . . . , vk} \ {vi}). However, this implies

{v1, . . . , vk} ⊆ Span ({w1, . . . , wn}) ⊆ Span ({v1, . . . , vk} \ {vi}) ,

which is a contradiction.

3.1 Finitely generated spaces

A vector space V is said to be finitely generated if there exists a finite set T such that
Span (T) = V. The following is an easy corollary of the Steinitz exchange principle.

Corollary 3.6 Let B1 = {v1, . . . , vk} and B2 = {w1, . . . , wn} be two bases of a finitely generated
vector space V. Then, they must have the same size i.e., k = n.
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Proof Sketch: Use the exchange principle to successively replace elements from B1 by
those from B2. Since we need to replace k elements and no element of B2 can be used twice
(why?) we must have k ≤ n. By symmetry, we must also have n ≤ k. �

The above proves that all bases of a finitely generated vector space (if they exist!) have the
same size. It is easy to see that a similar argument can also be used to prove that a basis
must always exist.

Exercise 3.7 Prove that a finitely generated vector space with a generating set T has a basis (which
is a subset of the generating set T).

The above argument can also be used to prove the following statement.

Exercise 3.8 Let V be a finitely generated vector space and let S ⊆ V be any linearly independent
set. Then S can be “extended” to a basis of V i.e., there exists a basis B such that S ⊆ B.

The size of all bases of a vector space is called the dimension of the vector space, denoted as
dim(V). Using the above arguments, it is also easy to check that any linearly independent
set of the right size must be a basis.

Exercise 3.9 Let V be a finitely generated vector space and let S be a linearly independent set with
|S| = dim(V). Prove that S must be a basis of V.
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